
Abstract. Explicitly correlated MBPT-R12 and coupled
cluster [up to CCSD(T)-R12] methods have been used in
calculations of various (vibrationless) electrical proper-
ties for the LiH molecule, including the dipole and
quadrupole moments, dipole and quadrupole polariza-
bility tensors, dipole hyperpolarizability tensors, and the
second dipole hyperpolarizability tensors. Generally,
with extension of the basis set the R12 method did not
lead to faster convergence for the calculated properties
towards the basis limit. Nevertheless, R12 calculations
serve as useful indicators to judge the reliability of the
results, and substantially help in determining the accu-
racy. Results obtained with the 11s8p6d5f=9s8p6d5f
basis and CCSD(T)-R12 calculated within this work
should be close to the basis set limit.
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1 Introduction

Reliable knowledge of higher-order electric properties is
of great importance for the design and development of
novel nonlinear optical materials. Though conceptually
an easy task, an accurate and reliable prediction of
second- and higher-order polarizabilities of molecules
remains a great challenge to theoretical chemists. On one
hand, problems arise owing to the necessity of using
extremely accurate correlated methods with rather
extensive basis sets; on the other hand, the calculation
is complicated owing to the lack of higher-order
analytical derivative methods for highly correlated
approaches. Developments in the analytical response

methods concerning the hyperpolarizability calculations
have been recently reviewed by Luo et al. [1].

Using simple well-established ®nite di�erence tech-
niques (see e.g. [2]) instead of the analytical derivatives
again ampli®es the computational demands by a neces-
sity to achieve much higher numerical stability than is
usually required, for example in the study of chemical
reactivity or even weak intermolecular interactions.

Experience with calculations of higher-order electrical
properties reveals that the prerequisite of reliable results
is the use of ¯exible enough basis sets which include
functions with higher angular momentum quantum
numbers needed to properly describe the deformation in
the charge distribution under the in¯uence of the electric
®eld (®eld gradient).

Of course, this aspect has to be separated from the
generally slow convergence of the conventional con®g-
uration interaction (CI) expansion when the basis set is
increased toward the completeness and which is caused
by the inability of the CI wave functions to describe the
correlation cusp [2] correctly. It was clear a long time
ago [4, 5] that as soon as the inter-electronic coordinate
r12 is explicitly introduced into the wave function, the
convergence toward the limit value is speeded up dra-
matically. Nevertheless, owing to the occurrence of
many-electron integrals or other conceptual or compu-
tational problems, methods which treat this problem are
not widely used. An excellent review concerning this
topic has been recently written by Klopper [6]. To such
methods also belongs the family of explicitly correlated,
so called R12, methods whose origin goes back to the
work of Kutzelnigg [7]. These basically start from the
usual conventional one-electron basis sets and the many-
electron integrals are essentially eliminated ± though not
``free of charge'' (vide infra). Recently, we have imple-
mented this idea within the coupled cluster (CC) theory
[8, 9]. Using such an approach for a four-electron sys-
tems like LiH, it was possible to achieve accuracy of
the calculated energy within about 50 lEh from the
estimated limit value [10]. In the latter case we used
CCSDT1-R12 (the R12 analog of CCSDT-1[11]) with
the 11s8p6d5f=9s8p6d5f GTO basis set. With the same
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basis set the conventional CC result has been o� by
about 1 mEh. When f functions on both atoms were
disregarded, the CCSDT1-R12 error in the energy
remained within 0.15 mEh, whereas the conventional
energy was o� by more than 2 mEh.

Encouraged by the above-mentioned results, in this
study our aim was to obtain predictions of static
electrical properties for the LiH molecule which
approach what can be assigned to the basis set limit
value. This motivation has been strongly enhanced by
the dissipation of values currently available from the
literature. The long list of results was summarized some
time ago by KarlstroÈ m et al. [12] and very recently by
Papadopoulos et al. [13]. The majority of the papers deal
with the dipole moment and the dipole polarizability;
less is available for the dipole hyperpolarizability [13±
19], and very scarce are the predictions for the second
dipole hyperpolarizability [13, 17, 20]. In the present
study we have extended the number of investigated
properties to quadrupole moments and quadrupole po-
larizability tensors which were earlier calculated using
the point charge method and multi-con®guration self-
consistent ®eld [16].

For higher-order electrical properties one could
hardly expect the same convergence behavior with ex-
tension of the basis by higher angular momenta as for
the absolute energy. Nevertheless, in this line, our recent
results for the polarizability of Be [21] have shown a
substantial improvement in favor of the R12 method.
Hence, such an investigation of the convergence pattern
with a systematic extension of the basis is also included
in this study, together with the convergence pattern in the
hierarchy of many-body perturbation theory (MBPT)
methods.

2 Method and computational details

In the present calculations we have used both conventional CC and
explicitly correlated coupled cluster theory (CC-R12) currently
implemented in the direct integral driven code DIRCCR12-95 [22]
which uses the R12 adopted [23] modi®ed version of the HERMIT
program [24±26] to provide the necessary integrals. A comprehen-
sive summary of the conventional CC approach has been recently
given [27]. CC-R12 theory in full detail can be found elsewhere
[9, 28].

A common feature of single-reference CC theories is that the
wave operator X which transforms the independent particle model
wave function U, describing the non-degenerate ground state of
some many-electron system, into the exact wave function W can be
expressed as an exponential of the so-called cluster operator (S),
i.e.

W � XU � eSU �1�
In a conventional ansatz [29], S � T is the usual global cluster
excitation operator
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With U being a Slater determinant, i; j; . . ., and a; b; . . . denote
the occupied and virtual molecular spin-orbitals, respectively. aab...

ij...
are particular excitation (replacement) operators which create the
usual excited determinants in the conventional con®guration space.

In the explicitly correlated CC-R12, the inter-electronic distance
operator is essentially introduced into the wave operator via
putting
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where a; b refer to virtual spin orbitals in a complete basis, while
p; q; r; s refer to arbitrary spin orbitals. Obviously R represents a
basis set incompleteness correction. This operator basically creates
unconventionally substituted determinants in which a pair of occu-
pied spin orbitals ij is replaced by another pair of occupied spin
orbitals kl multiplied by the inter-electronic distance operator, and
from the resulting function only the orthogonal complement to the
conventional excitation space is preserved. The weight of such a
substituted determinant in the ®nal wave function expansion is
related to the amplitude cij

kl.
We will not go further into detail here. Let us just mention that

in the working equations the summations over the complete basis
can be treated by a systematic introduction of completeness inser-
tions known as the standard approximation [30]. Then the di�cult
many-electron integrals can be eliminated from the calculation,
provided that the basis set is (quasi) saturated for the lower angular
momenta. This is the price to pay mentioned in the introduction.
For details the reader is referred elsewhere [9, 28, 30]. We note that
the validity of the standard approximation has been shown for
externally unperturbed systems (i.e. the standard Fock matrix).
Nevertheless, one can ®nd [30] that the parts of the Fock operator
which commute with r12 do not in¯uence the ®nal forms, which
holds for the dipole and quadrupole operators introduced in our
calculations (vide infra).

From the beginning we have used the ®nite ®eld technique [2] to
calculate all the properties, i.e. the dipole (l) and quadrupole (H)
moments, dipole polarizability (a), dipole hyperpolarizability (b),
second dipole hyperpolarizability (c), and the quadrupole polari-
zability (C). As external perturbations we have used homogeneous
electric ®elds of strengths from �0:00005 to �0:005 au and ®eld
gradients of strengths from �0.0001 to �0.005 au. Values for the
calculated properties were obtained from polynomial ®ts from the
energy expansion with respect to the applied electric ®eld (®eld
gradient) strength [31]:

E �E0 ÿ laFa ÿ 1
2 aabFaFb ÿ 1

6 babcFaFbFc ÿ 1
24 cabcdFaFbFcFd ÿ � � �

ÿ 1
3HabFab ÿ 1

6 Cab;cdFabFcd ÿ � � �
..
. �7�

Cartesian coordinates are denoted as a; b, and c su�xes and sums
over all possible components are implicitly understood. Fa and Fab
are the electric ®eld and the electric ®eld gradient, respectively. We
took a polynomial by one order higher than the highest investigated
property in the series, i.e. of ®fth order for the expansion with
respect to the electric ®eld, and third order with respect to the ®eld
gradient. The number of points in the ®t was at least twice the
number of ®tted parameters.

All calculations have been performed for the equilibrium inter-
nuclear separation of 3.015 au, which is both an experimental and
optimal value with our best method and basis set. Naturally, we
have used here the same GTO basis sets which led to the very
accurate energies [10] mentioned in the introduction, namely
14s8p6d5f=11s8p6d5f for the lithium and 12s8p6d5f=9s8p6d5f for
the hydrogen atom.

Besides the absolute energy, also the spectroscopic constants
and the binding energy for the LiH molecule were extremely ac-
curate [10]. We believe that those basis sets are ¯exible enough for
the pertinent calculations of the polarizabilities. Though it is clear
that an sp set can hardly provide accurate polarizabilities even with
the R12 method, we were curious if there is at all any improvement
using the latter. Therefore, we have also performed calculations
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with the sp and spd subsets of the initial basis for both atoms. We
have not discriminated between Li and H, because essentially the
LiH molecule tends to be an ion pair Lid�Hdÿ where both atoms
resemble two-electron systems. Unlike previously [10], spherical
harmonics have now been used since in the meantime we have
adopted our program in this way. Despite the energy di�erences
being very small (at the level of about 10 lEh), the recalculated
energies are collected in Table 1, for completeness.

As can be seen, the highest level correlated method which we
use in this study is CCSD(T) [32] or alternatively CCSD(T)-R12.
Our previous results on the energy clearly proved that it was inef-
fective to go further in the hierarchy of CC methods. With iterative
treatment of triple excitations within CCSDT-1 the energy di�ers
by only 2 lEh. To be certain, we have calculated the dipole moment
and the azz polarizability using CCSDT-1, but within the ®gures
given below there was no di�erence. To show the convergence
pattern in the hierarchy of correlated methods we have included the
MBPT results up to fourth order, and the CCSD[T]=CCSD +
T(CCSD) [33].

All calculations had an adjusted integral threshold of 10ÿ14, and
all the CC results were converged to 10ÿ10 for the amplitudes, what
means at least 10ÿ11 Eh for the energy.

3 Results and discussion

Prior to discussing the results we have to note that they
are not vibrationally averaged. As one can see from the
recent work by Papadopoulos et al. [13], vibrational
contributions are rather large even for the vibrational
ground-state. For hyperpolarizabilitties the vibrational
corrections are of the order of the magnitude of the pure
electronic contributions. On the other hand, correlation
e�ects were only accounted for via MBPT(4) [13], which
is clearly not enough, as follows from the results below.
Hence our study can serve as a complementary useful
information to [13].

Calculated dipole moments and related polarizabili-
ties are collected in Tables 2±5. There is a solid point to
which one can eventually compare at the SCF level,
namely the fully numerical calculation by Laaksonen
et al. [34]. Our SCF energy is higher just by 13 lEh and
the dipole moment agrees within 0.0002 au. It is clear
from Table 2 that including the d functions into the basis
set is not more important than to fully account for the
correlation e�ects, which is ± with the given basis set ±
accomplished at the CCSD(T) level. Practically negligi-
ble di�erences between the CCSD[T] and CCSD(T)
values just con®rms the previous statement.

Unlike the energy, for the dipole moments we can
hardly say that the R12 method is superior. Neither
could we say that the result is converged to the limit
when the R12 and conventional values are almost the
same. This simply re¯ects the fact that it is not the im-
proper description of the correlation cusp which plays
the crucial role, but instead the lack of higher angular
momenta needed in the wave function to be able to
describe the charge distribution properly. f functions
contribute very little to the dipole moment, as expected.

There is, however, an indicator to estimate how the
basis set for the given property is saturated, namely the
di�erence between the MBPT(2)-R12 results obtained
with the more slowly converging standard approximation
``A'' and faster convergent standard approximation ``B''
[9, 28, 30]. The latter is a default for higher-level calcu-
lations; therefore we have only denoted ``A'' in the table.
The closeness of the results from both methods is a good
indication for the convergence. With the largest basis set
this di�erence is about 0.001 au for the dipole moment,
while using the sp basis set the deviation is 0.015 au.
In view of the convergence pattern both for the con-
ventional and R12 results, the limiting value at the
CCSD(T) level will fall slightly below 2.2935 au, in ex-

Table 1. Total energies for the
LiH molecule (in Eh)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

SCF )7.98710265 )7.98733093 )7.98733914
MBPT(2) )8.04931568 )8.05849971 )8.05655489 )8.05999941 )8.05830397 )8.06015346
MBPT(3) )8.05969693 )8.06693477 )8.06555451 )8.06732371 )8.06655497 )8.06734074
MBPT(4) )8.06212690 )8.06889569 )8.06767119 )8.06953799 )8.06867105 )8.06963001
CCSD )8.06288727 )8.06959983 )8.06834248 )8.07024640 )8.06935229 )8.07031265
CCSD[T] )8.06299463 )8.06970187 )8.06849781 )8.07039927 )8.06951849 )8.07047764
CCSD(T) )8.06299329 )8.06970040 )8.06849588 )8.07039732 )8.06951644 )8.07047563

Table 2. Dipole moment l cal-
culated for LiH using various
methods (in au)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

SCF 2.3615 2.3621 2.3620
MBPT(2) 2.3358 2.3430 2.3274 2.3277 2.3258 2.3262
MBPT(2)/A ± 2.3279 ± 2.3261 ± 2.3252
MBPT(3) 2.3292 2.3238 2.3152 2.3146 2.3138 2.3138
MBPT(4) 2.3223 2.3184 2.3064 2.3067 2.3051 2.3054
CCSD 2.3104 2.3108 2.2967 2.2971 2.2957 2.2960
CCSD[T] 2.3083 2.3088 2.2944 2.2949 2.2934 2.2937
CCSD(T) 2.3084 2.3089 2.2945 2.2951 2.2935 2.2939
CCSDT-1A 2.3085 2.3089 2.2946 2.2951 2.2936 2.2939
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cellent agreement with the vibrationless estimate (2.293
au) determined using molecular-beam spectroscopy by
Rothstein [35]. It is also very close to rather accurate
value of 2.2921 au obtained by Roos and Sadlej [36]
using a rather extensive basis set and CAS-SCF. The
vibrational contribution calculated at the SCF level by
Papadopoulos et al. [12] was 0.025 au. The latter authors
used evidently less saturated basis sets and the deviation
of the SCF dipole moment from the numerical HF limit
was larger than in our case. Nevertheless, the vibrational
correction can be expected around the given value. Ac-
tually this correction coincides with the di�erence be-
tween the mentioned vibrationless estimate and other
experimental values of 2:314� 0:001 au [37] and 2.3145
au [38].

In Table 3 we display the calculated dipole polariza-
bility tensor components. Again, similar trends are en-
countered as for the dipole moment. However, the e�ect
of electron correlation is much more pronounced. Un-
fortunately, in the course of the calculations we did not
think about the usefulness of MBPT(2)-R12/A for po-
larizabilities. The pertinent energy has been standardly

printed out with too few decimal places in order to be
able to provide numerically plausible values. Therefore
we have not included them in the table. Nevertheless, let
us just mention that for the azz the di�erences between
MBPT(2)-R12/A and MBPT(2)-R12/B are roughly 0.6,
0.1, and 0.02 au, for sp, spd, and spdf basis sets, re-
spectively. Larger were the di�erences for axx (1, 0.5, 0.15
au). If we take into consideration that with the more
accurate correlated methods the results converge faster
to the limit, as follows from the results, we can safely
estimate the value of 25:80� 0:03 au as the CCSD(T)-
R12 azz limit. Perhaps with a little more uncertainty the
limiting value for the axx tensor component can be esti-
mated as 29:60� 0:05 au. The vibrationally uncorrected
anisotropy is then Da � ÿ3:8 au. It should be mentioned
here that the vibrational correction can even change the
sign for Da [13]. Finally, the average polarizability �a1

should lie within 28.35 ±28.45 au. The SCF vibrational
correction makes as much as almost 20% for azz, and,

Table 3. Static dipole polariz-
ability (a) tensor componets
calculated for the LiH molecule
using various methods (in au)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

azz
SCF 21.89 21.88 21.88
MBPT(2) 24.07 23.62 23.57 23.35 23.49 23.42
MBPT(3) 24.83 24.18 24.32 24.11 24.26 24.13
MBPT(4) 25.42 24.73 24.92 24.71 24.95 24.83
CCSD 26.68 25.71 25.87 25.61 25.78 25.69
CCSD[T] 26.68 25.84 25.99 25.73 25.90 25.81
CCSD(T) 26.67 25.83 25.98 25.71 25.88 25.79

axx
SCF 24.50 25.24 25.41
MBPT(2) 25.68 25.32 26.94 26.41 27.07 26.92
MBPT(3) 26.49 25.90 27.96 27.82 28.04 27.97
MBPT(4) 26.97 26.55 28.59 28.36 28.68 28.58
CCSD 27.71 27.42 29.51 29.34 29.60 29.53
CCSD[T] 27.80 27.42 29.55 29.39 29.64 29.57
CCSD(T) 27.80 27.42 29.54 29.38 29.63 29.57

Table 4. Dipole hyperpolariz-
ability (b) tensor components
calculated for the LiH molecule
using various methods (in au)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

bzzz

SCF )328 )308 )310
MBPT(2) )506 )454 )433 )408 )426 )411
MBPT(3) )557 )507 )477 )460 )471 )458
MBPT(4) )604 )548 )520 )499 )514 )518
CCSD )604 )548 )520 )499 )514 )518
CCSD[T] )764 )688 )646 )622 )624 )633
CCSD(T) )765 )685 )649 )619 )639 )630

bxxz

SCF )137 )131 )132
MBPT(2) )174 )156 )161 )152 )158 )152
MBPT(3) )192 )174 )177 )171 )175 )170
MBPT(4) )208 )188 )193 )186 )190 )192
CCSD )262 )231 )236 )225 )232 )230
CCSD[T] )262 )237 )240 )231 )238 )235
CCSD(T) )263 )236 )241 )230 )237 )234

1�a � 1
3
�2axx � azz�; �b � 3

5
�2bxxz � bzzz�;�c � 1

5
�8
3
cxxxx � czzzz � 4cxxzz�

81



naturally, much less (by an order of magnitude) for axx
[13].

Tensor components for the dipole hyperpolarizabilty
b and the second dipole hyperpolarizability c are given
in Tables 4 and 5. In the case of the hyperpolarizability
b, with nonzero components bzzz and bxxz, it is much
more important to properly account for the correlation
energy than to extend the basis. Indeed, the correlation
contributions comprise as much as 50% of the total
values, but beyond MBPT(4) the contributions alone
cover about one third of the total correlation e�ects. The
vibrational correction, as given in [13], has an opposite
sign and a value of 373 au for bzzz. Based on the fact that
results using conventional and explicitly correlated
methods systematically approach each other if one ex-
tends the basis by d and f functions, we can predict a
vibrationless bzzz � ÿ630 au and bxxz � ÿ234 au with an
estimated error bar of about 2% . These values corres-
pond to an average around �b � ÿ660 au.

Unlike the hyperpolarizability, the second dipole
hyperpolarizability c is much more sensitive to extension
of the basis set, but still the correlation e�ects account

for a substantial part of the tensor component values. Of
course, the sp basis is too poor. However, it is quite
interesting to note that even if the SCF values with
di�erent basis sets di�er considerably, as soon as d
functions are included, at the level of correlated calcu-
lations, the di�erences are much smaller. Again, with
spdf basis sets the conventional and R12 values are
rather close, which is valid generally from MBPT(2) to
CCSD(T). Hence, the corresponding CCSD(T)-R12
values are our predictions. Using these we arrive at an
average value of �c � 111� 103 au.

Perhaps it is worth noting that by adding more di�use
s and p functions to our basis for Li, the above-men-
tioned ®nal results remain the same within slight changes
in the last printed digit. We have checked this using the
spd basis set and the CCSD-R12 method, because our
original set did not include as di�use s and p functions as
some other basis sets used in previous calculations of
polarizabilities. From our study it follows that for LiH it
seems to be more important to have a ``di�use'' basis set
for H, in accord with the ionic character (Lid�Hdÿ) of
this molecule.

Table 5. Second dipole hyper-
polarizability (c) tensor com-
ponents calculated for the LiH
molecule using various methods
(in 103 au)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

czzzz
SCF 61.1 53.1 73.5
MBPT(2) 83.7 68.4 76.5 71.2 75.2 73.5
MBPT(3) 91.3 81.0 83.7 80.2 82.4 79.3
MBPT(4) 98.7 88.2 90.7 86.8 84.7 83.7
CCSD 126.6 112.3 124.1 108.3 111.3 109.5
CCSD[T] 128.4 114.3 126.9 110.8 113.8 111.9
CCSD(T) 128.4 114.3 126.6 110.3 113.3 111.5

cxxzz
SCF 14.3 25.5 34.1
MBPT(2) 22.4 21.1 39.5 35.8 40.2 40.2
MBPT(3) 23.3 22.9 42.3 41.5 43.0 43.1
MBPT(4) 24.3 23.9 45.2 43.1 45.4 44.9
CCSD 25.2 24.9 49.4 48.4 49.8 49.3
CCSD[T] 25.2 24.9 49.6 48.5 49.9 49.3
CCSD(T) 25.3 24.9 49.6 48.5 49.9 49.3

cxxxx
SCF 30.9 50.7 70.0
MBPT(2) 46.3 43.6 74.8 67.8 75.9 75.9
MBPT(3) 47.8 46.7 80.1 78.6 81.1 81.5
MBPT(4) 48.9 48.0 83.6 79.8 84.7 83.7
CCSD 50.6 50.0 91.4 89.5 92.9 91.8
CCSD[T] 50.6 50.0 91.7 89.8 93.1 92.1
CCSD(T) 50.6 50.0 91.7 89.7 93.1 92.0

Table 6. Quadrupole moment
H calculated for the LiH mole-
cule with respect to the center of
mass (in au)

Basis sp spd spdf

Method Conv R12 Conv R12 Conv R12

SCF 3.373 3.379 3.379
MBPT(2) 3.299 3.365 3.239 3.243 3.230 3.240
MBPT(3) 3.269 3.243 3.180 3.174 3.173 3.172
MBPT(4) 3.240 3.219 3.142 3.143 3.137 3.142
CCSD 3.198 3.192 3.105 3.104 3.103 3.105
CCSD[T] 3.192 3.186 3.097 3.097 3.095 3.097
CCSD(T) 3.193 3.186 3.098 3.097 3.096 3.097
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Calculated ®eld gradient properties, the quadrupole
moment, and the quadruple polarizability tensor are
given in Tables 6 and 7. Quadrupole moments were
calculated with respect to the center of mass. At the SCF
level the quadrupole moment agrees very well with the
numerical SCF value of 3.3701 au [39]. Surprisingly low
is the sensitivity of the results to the inclusion of higher
angular momentum funtions in the basis set. Relative
contributions from electron correlation e�ects are simi-
lar, as for the dipole moment and the dipole polariza-
bility. Our best estimate for the quadrupole moment is
3.097 au, in a fairly good agreement with a high-level CI
calculated value by Bishop and Cheung [40, 41] of
3.0655 au.

As for the dipole polarizabilities, the conventional
and explicitly correlated results for the quadrupole po-
larizability tensor are almost identical for the spdf basis
sets; hence the corresponding CCSD(T)-R12 values are
our best predictions. Our values di�er from those re-
ported by Bishop and Lam [16], however, calculated
with much smaller basis sets. Using the point charge
technique at the MC SCF level they obtained 222, 118,
and 94 au for Czz; zz, Cxz; xz, and Cxx; xx, respectively. Also,
we have observed much less sensitivity of Cxx; xx when d
functions were added.

It is somewhat disappointing that with extending the
basis up to f functions the R12 method did not converge
faster to the limiting value. For the dipole moment the
spd basis in a way corresponds to the sp basis for the
energy, so, as mentioned above, with the sp basis an
improvement was not really expected. Another factor
which plays an important role in the R12 calculations is
justi®cation of the standard approximation. For atoms it
is rather straightforward. For instance, if only s orbitals
are occupied in the reference wave function, a saturated

sp basis set is appropriate. With s and p orbitals occu-
pied in the reference, one should have a saturated spdf
basis set.

Let us consider the beryllium atom whose occupied
orbitals in the reference state only involve s functions.
However, when an external electric ®eld is applied, then
also p functions are partially involved in occupied or-
bitals. Consequently, the standard approximation is less
justi®ed with the sp set only. This may cause an addi-
tional numerical imbalance. Although the error caused
by this imbalance might be negligible for absolute en-
ergies, for delicate numerical di�erences which occur in
calculations of polarizabilities, even small disturbances
can cause large errors. Similar considerations can be
applied to molecules, including our case. Essentially,
both factors mentioned above shift the ``full'' reliability
of the R12 results toward basis sets with higher angular
momenta. Indeed, one can see this trend for the beryl-
lium atom where we were able to go as far as to h
functions [21]. So it is probable that a clear convergence
trend in favor of R12 would start from the spdf basis
set toward more extended basis sets, i.e. toward further
re®nement of the results. Unfortunately, computational
demands for such a study are extremely high.

4 Conclusions

Although using explicitly correlated methods we cannot
see a substantial improvement in the convergency of
calculated electric properties toward the basis set limit
value, it is certainly a useful tool to judge if the results
are close to the limiting values. Namely, when the
conventional and explicitly correlated values in the
whole range of correlated methods di�er just very

Table 7. Quadrupole polariz-
ability (C) tensor components
calculated for the LiH molecule
using various methods (in au)

Basis
sp spd spdf

Method Conv R12 Conv R12 Conv R12

Czz;zz
SCF 290.1 299.6 298.8
MBPT(2) 300.3 291.5 309.2 289.6 307.7 307.3
MBPT(3) 306.3 297.9 315.5 311.5 313.8 312.5
MBPT(4) 310.2 303.0 319.5 312.7 317.9 316.9
CCSD 315.3 308.3 323.9 318.1 329.9 329.9
CCSD[T] 315.6 308.5 324.1 318.3 329.7 330.7
CCSD(T) 315.6 308.5 324.1 318.3 330.0 331.1

Cxz;xz
SCF 138.2 147.7 142.3
MBPT(2) 142.3 138.2 146.5 137.4 145.8 145.6
MBPT(3) 145.2 141.2 149.5 147.6 148.7 148.1
MBPT(4) 147.0 143.6 151.4 148.2 150.7 150.2
CCSD 150.2 146.8 154.2 151.1 157.2 156.8
CCSD[T] 150.3 146.9 154.3 152.0 157.1 157.4
CCSD(T) 150.3 146.9 154.3 151.7 157.1 157.4

Cxx;xx
SCF 210.2 217.1 217.5
MBPT(2) 222.4 215.9 229.0 214.5 227.9 227.6
MBPT(3) 226.9 220.0 233.6 230.7 232.4 231.5
MBPT(4) 229.8 224.5 236.6 233.1 235.5 234.8
CCSD 237.1 231.7 243.6 239.2 248.0 247.6
CCSD[T] 237.3 231.9 243.8 239.4 248.1 248.6
CCSD(T) 237.3 231.9 243.7 239.3 248.1 248.9
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slightly, this is a good indication for (quasi) saturation of
the basis set. A similar indication is the small di�erence
between the two variants of the standard approximation
at the MBPT(2) level. For the polarizability of atoms (Be
[21] and Fÿ [42]), however, we have found clearly faster
convergency for explicitly correlated methods.

The results de®nitely show that even for such a small
molecule as LiH, in order to obtain reliable result it is
equally important to account for in®nite order e�ects
(via CCSD) and to add higher angular momentum
functions. The e�ect of triple excitations is practically
negligible, as can be expected. We believe our results
have decreased the uncertainty in the dissipation of
calculated predictions for static polarizabilities and
hyperpolarizabilities of this molecule.
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